Shots and Goals: Quality, Expectations and Context

I have been reviewing the literature on shots and goals in ice hockey and association football.

In doing so, I am mindful of Ted Knutson’s (2013) observation:

The soccer analytics community is currently growing by leaps and bounds, which means that there’s new information being processed almost every single day. It also means that there are tons of new people interested in the topic, and figuring out who to read or where to go can be a bit daunting at first.

I have compiled a bibliography that covers 2004 to 2017. Link.

It is incomplete but extends to twelve pages. It is a Google Doc so I will continue to update it. One of my problems in researching the literature was my inability to access some of the ice hockey articles.

I ended up on this landing page a number of times:

I have included the references in my list and apologise for the lack of access. I could not find the posts archived or curated anywhere else.

I have started to compile a synthesis of the literature. This is another ongoing Google Doc project. Link.

Many years ago, I pursued the coaching connections between association football and field hockey. I was inspired by Horst Wein.

In locating conversations about quality and expectations of shots and goals in association football, I have looked more closely than I have previously at the ice hockey literature. I found the quality of writing and insights shared profoundly interesting. I particularly liked the idea that many of the writers used pseudonyms, including the exotic Vic Ferrari.

In a desire to create an open educational resource from this review, I have created a Google Doc to offer a partial introduction to football analytics. Link.

At the heart of the resource is a discussion about Lex Immers.

I was only able to access Michiel De Hoog’s (2014) post because of Erica Moore’s (2016) translation of the original Dutch article.

Erica’s open sharing reaffirmed for me not only the delights of open sharing but also the vibrancy of the football analytics literature.

I am keen to develop these resources and would welcome any guidance a remarkable community of practice can offer.

Photo Credit

Peter Whittingham Scores From the Freekick (John Candy)

An Introduction to Analytic Narratives for Coaches and Students

A photograph of Aboriginal Whalers at Eden, NSW.


I received an alert to a paper today that has sent me off to revisit Donald Polkinghorne‘s and Philippe Mongin‘s discussion of narrative and the process of historical analysis … and to contemplate pedagogy.

The paper that started my journey today is titled ‘The Cooperation of Humans and Killer Whales (Orcinus orca): The Application of a Simple Fuzzy Rule-Based Model to a Historical System‘. The authors of the paper are Emery Coppola, Ryan Jones, Jack Owens and Ferenc Szidarovszky.

They present:

an historical model application that is pedagogical in nature, in that it presents the methodology for constructing a simple fuzzy model for a vague  but complicated social cooperative network along with example model-simulation results.

Their paper has an immediate empirical appeal for me as they discuss activities in a geographical area four hours to the south of my home in New South Wales.

Once I was hooked by the accident of geography, I became intrigued by their approach to bring together fragmentary data sources to create a model.

I believe their paper, and its connections with others interested in ‘narrative knowing’ and ‘analytic narratives’, raises important issues for the discussion of sport analytics.

A Narrative of Cooperation

A picture of a whale hunt at Eden, NSW.

In their paper, Emery, Ryan, Jack and Ferenc study “a complicated social cooperative network in Twofold Bay, southeastern Australia, over a century until 1930″. They note “Surviving sources document that pods of killer whales or orcas worked cooperatively with human bay whalers” to pursue and kill baleen whales.

Jack has been involved in the field of geographically-integrated history since the late 1960s. The Twofold Bay research provides an excellent opportunity to pursue this kind of history project.

The research has to deal with some fundamental issues about data. “The whalers are long dead, and there is no systematic collection of records from which we can draw”. There are subsequent studies of “orca behavior in different regions of the world done over the past 40 years” and there is “significant research on Australia’s Aboriginal peoples”.

Despite these constraints, their goal was to develop a fuzzy rule-based model that predicts the likelihood of the success of the social network in killing a whale”. In this case study “prediction means that the model will simulate the outcome of a whale hunt for each event in our narrative”.

They share the process of developing their fuzzy rule-based model and report:Our attempt to represent a complicated social network with a simple rule structure falls far short of plausibility. At the same time, our initial efforts, however modest, compel the historian/modeler to formulate a set of linguistic rules that quantify often highly vague variables and conditions, qualitative and/or quantitative in nature, in an attempt to represent and simulate a complicated system of interest.

I liked their exploration of the pedagogical issues in their research. I liked too their reflection on their practice:

As we learn from our initial models and accumulate more data, information, and understanding, we can formulate and test new models against the surviving record, allowing us to consider alternative hypotheses and to see more clearly what additional information we need to acquire … in an attempt to explain better this fascinating cooperation between orcas and human whalers for at least a century to hunt successfully large baleen whales. (My emphasis.)

As I read the concluding paragraphs in their paper, I was struck by the generic issues Emery, Ryan, Jack and Ferenc raise:

  • Imperfect information
  • Flawed understanding of processes that are often so complicated that no model will ever accurately capture the underlying dynamics
  • Narrative sharing
  • Acceptable prediction accuracy
  • Models as a first step to forming a theoretical or heuristic framework for analysis
  • Refining and improving understanding through additional data collection, model development, and testing.

These issues are central to a scholarship that embraces “new forms of research organization and rapidly evolving types of information management and analysis” (Owens, 2010).   They connected me with Donald Polkinghorne and Phillipe Mongin.

Sharing Stories With Practitioners

A picture of the fins of two orca whales

After reading Emery, Ryan, Jack and Ferenc’s paper, I thought about how I might share with coaches some of the take-aways from their “flawed understanding”.

I wondered too how I might share the pursuit of heuristic frameworks with students as they develop their understanding of analytics.   Donald Polkinghorne’s (1988) exploration of narrative knowing places significant emphasis on the importance of “having research strategies that can work with the narratives people use to understand”. 

Most of the coaches with whom I work are able to locate themselves within an historical context in sport, in terms of the sport in general and in terms of their own career paths.

I think they would find the story of the orcas as fascinating as I do.

My hope is that this might lead to conversations about understanding and transforming performance. I think I might be very selective about what I share and would gloss over the fuzzy-logic part of the story.   I think the orcas would be a great lead in for students too but the context of our conversations would enable me to explore what constitutes fuzzy logic and its potential to model behaviour.

With both groups, coaches and students, I would be mindful of Donald’s observation:

History’s function is to describe the events of the real world as they have actually happened and to explain why they have happened. … Historical narrative is supposed to be factual – that is, it is supposed to be made up of true sentences that represent actual past events. The sentences of historical discourse are expected to pass a correspondence test based on the evidence of the traces of events left in documents. (1988:57) (My emphasis.)

I take our ability to develop actionable insights to be informed by a rigour in how we collect and analyse data that can be fragmented and partial as well as comprehensive.

Could He Have Won?

Farmland in Belgium that was the site of the Battle of Waterloo

I enjoy returning to Philippe Mongin’s 2009 paper, A Game-Theoretic Analysis of the Waterloo Campaign and Some Comments on the Analytic Narrative Project.

In the paper Philippe presents a game-theoretic model of Napoleon’s last campaign, which ended dramatically on 18 June 1815 at Waterloo. It looks in particular at the decision Napoleon made “on 17 June 1815 to detach part of his army against the Prussians he had defeated, though not destroyed, on 16 June at Ligny”.

In his discussion of events in the Waterloo Campaign, Philippe observes:

At three key moments – June 17, around mid-day on June 18, and in the final hours of this same day – Napoleon could have departed from the line of events that his previous decisions had set in motion, and he did not (2009:15).

Philippe is able to include much more detailed data in his analytic narrative compared to the orca paper. His discussion of the process of constructing an analytic narrative provides an explicit opportunity to explore how history might have been redefined and to think critically about ‘the culture of the unique’.

In 2016, Philippe revisited the process of constructing an analytic narrative. He notes that “the transformations that standard narratives incur to become analytic narratives bears some relation to the transformations they incur to become computational narratives” (13:11).

I take the essence of this tranformation to be the understanding that “analytic narratives are narrative texts, which include, among their parts in non-narrative form, the statements of formal models and their consequence” (13:9).

Philippe used this approach in his study of Waterloo, Emery, Ryan, Jack and Ferenc did too in their use of models within a case study with much less documented evidence.

Narratives and Audiences

A picture of Mongolian wrestlers and their coaches.

My aim in discussing analytic narratives is to open conversations about evidence and models.

It is an attempt to extend the epistemic reach of sport analytics in the connections we make with coaches and students.

I am attracted to the qualitative nature of analytic narratives but am mindful that they provide an excellent platform for engagement with quantitative models. Emery, Ryan, Jack and Ferenc used fuzzy logic with fragmented historical accounts; Philippe used game-theoretic tools with an extensive textual record.

I am hopeful that the epistemic reach of sport analytics can be enriched by a pedagogical leap too. Jack Owens (2010), in his work on a Masters course at  Idaho State University, developed a capstone internship experience that allowed tutors to ‘coach’ students “in ways they can interact more effectively with others”.

As Donald suggests, narrative will be at the heart of vibrant interaction with practitioners. Imagine where a story that starts “Did I ever tell you about Old Tom?” or “How could you snatch defeat from the jaws of victory?” might lead us.

Photo Credits

The Aboriginal whalers of Eden (ABC South East NSW)

Return of the killer whales of Eden (Australian Geographic)

Orcas (Ed Dunens, CC BY 2.0)

Waterloo, Belgium (cjlvp, CC BY-NC-ND 2.0)

P1140782 (WhatsAllThisThen, CC BY-NC-ND 2.0)


Coppola, E., Jones, R., Owens, J. & Szidarovszky, F. (2015). The Cooperation of Humans and Killer Whales (Orcinus orca): The Application of a Simple Fuzzy Rule-Based Model to a Historical System. NOAH LLC and the Geographically-Integrated History Lab (ISU).
Mongin, P. (2016). What Are Analytic Narratives? Proceedings 7th Workshop on Computational Models of Narrative. B. Miller et al. (eds), pp. 13:1–13:13. Dagstuhl.
Mongin, P. (2009). A Game-Theoretic Analysis of the Waterloo Campaign and Some Comments on the Analytic Narrative Project. Paris: Groupe HEC.
Owens, J. B. (2010). Graduate Education in Geographically-Integrated History: A Personal Account. Ann Arbor, MI: MPublishing, University of Michigan Library.
Polkinghorne, D. E. (1988). Narrative knowing and the human sciences. New York: State University of New York Press.

Some Neil Lanham Treasures


I have changed the title of this post in response to Neil Lanham’s concerns. I mistakenly used the word artefacts to describe the resources he shared with me.

Neil’s point is “I do not like the word artefacts in this respect. What I do is organic and alive. Artefacts is dead”.

I apologise for this original error.

I have chosen to use ‘treasure’ instead. I hope this connotes their past, present and future significance.

I have rectified another error in the post. Neil’s analysis of the 1990 World Cup was in three volumes.

Neil Lanham at a football game ready to notate performance

I have been in contact with Neil Lanham to clarify his role in the early years on notating football performance.

Neil has kindly shared a number of treasures with me. With his permission I include some of them here as a contribution to a more detailed history of football notation during the ‘Charles Reep years’.

A hand notation:

Neil Lanham's hand notation of a football game

Neil’s report to the FA (in three volumes) on the 1990 World Cup:

Report of 1990 World Cup

Neil also shared a contract letter from Dave Bassett for the 1986-1987 First Division season with Wimbledon Football Club.

The letter contains these stipulations:

whilst in our employment or in the event of termination of our agreement that you are unable to reveal to any person or persons any of the analysis secrets of our confidential operations …

the same applies to any other football knowledge gained during your time with me and Wimbledon Football Club which will be kept with complete secrecy on all confidential information entrusted to you …

The early computer system, Neil and his wife Hazel.

Neil built up a database of 5,000 games to enable him to predict with confidence season outcomes.

Neil and Hazel Lanham

Photo Credits

All photographs courtesy of Neil Lanham